An acquisition of the relation between vision and action using self-organizing map and reinforcement learning
نویسندگان
چکیده
An agent must acquire internal representation appropriate for its task, environment, sensors. As a learning algorithm, reinforcement learning is often utilized to acquire the relation between sensory input and action. Learning agents in the real world using visual sensors is often confronted with critical problem how to build necessary and su cient state space for the agent to execute the task. In this paper, we propose acquisition of relation between vision and action using Visual State-Action Map (VSAM). VSAM is the application of Self-Organizing Map (SOM). Input image data is mapped on the node of learned VSAM. Then VSAM outputs the appropriate action for the state. We applied VSAM to real robot. The experimental result shows that a real robot avoids the wall while moving around the environment.
منابع مشابه
The Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملCombination of Reinforcement Learning and Dynamic Self Organizing Map for Robot Arm Control
This paper shows that a system with two link arm can obtain arm reaching movement to a target object by combination of reinforcement learning and dynamic self organizing map. Proposed model in this paper present state and action space of reinforcement learning with dynamis self organizing maps. Because these spaces are continuous. proposed model uses two dynamic self-organizing maps (DSOM) to e...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کامل